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Case Report
A 27-month old Caucasian boy with a previous history of 
syncope was referred to cardiology for evaluation of a heart 
murmur. Previously reported syncopal episodes had been 
ascribed to breath-holding spells. Family history was negative 
for sudden death, inherited arrhythmias or the need for 
pacemakers and defibrillators. His electrocardiograms revealed 
sinus tachy-bradycardia with accelerated junctional beats, 
first degree AV block, right ventricular conduction delay, non-
specific ST segment changes and QTc ranging between 470 - 
510 milliseconds (Figure 1). Echocardiography demonstrated 
increased left ventricular trabeculations with non-compacted 
to compacted ratio of >2:1 with low normal systolic function. 
A 24 hour Holter monitor showed heart rates ranging 10-110 
beats per minute with an average heart rate of 72 bpm, multiple 
pauses with the longest pause of 6 seconds and a run of non-
sustained wide complex rhythm at a rate of 150 bpm (Figure 2). 
Pacemaker implantation was recommended and the family chose 
transvenous route of implantation. Cardiac MRI was performed 
as pacemaker implantation would preclude a study later. The 
patient underwent general anesthesia by a cardiac anesthetist 
utilizing sevofluorane, fentanyl and vecuronium during induction. 
The MRI reported prominent trabeculations in left ventricle 
however the patient did not meet the MRI criteria for LV non-
compaction and no evidence of late gadolinium enhancement. 

Sinus node function was studied before pacemaker implantation. 
Baseline electrocardiograms showed sinus bradycardia with 
intermittent junctional escape rhythm, sinus pauses and 
intermittent ventricular ectopy. The amplitude of the atrial 
electrogram was 0.2-0.5 millivolts indicative of atrial quiescence. 
After multiple attempts to pace the atrium from different sites at 
maximum output, sinus node recovery time was measured with 
intermittent capture. Sinus node was significantly depressed with 
a corrected junctional recovery time of 4.1 seconds. Autonomic 
blockade revealed an abnormal intrinsic heart rate of 77 bpm 
(expected 117 beats per minute), suggesting intrinsic sinus 
node dysfunction. In view of the evidence of atrial standstill 
and inexcitability, it was decided to implant a single chamber 
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Abstract 

Mutations in the cardiac sodium channel gene SCN5A are linked to arrhythmias, 
cardiac conduction defects and cardiomyopathies. We report a 2 year old 
toddler with symptomatic sinus node dysfunction, negative family history, and 
increased left ventricular trabeculations. He underwent an unsuccessful attempt 
at transvenous pacemaker implantation, with no pacing capture at multiple 
ventricular and atrial sites. He required resuscitation for ventricular fibrillation, and 
was placed on extracorporeal membrane oxygenation (ECMO) support. Genetic 
analysis revealed compound heterozygous SCN5A loss-of-function and gain-of-
function mutations, individually inherited from both his parents. In addition to the 
full spectrum of manifestations of SCN5A mutations, our patient also exhibited 
ventricular inexcitability.
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pacing system with a ventricular lead. Initial attempts to place 
a ventricular pacing lead (Medtronic 3830-49 cm lead) failed 
to capture at maximum output from multiple septal pacing 
sites (x7). The patient developed episodes of bradycardia, 
asystole and ventricular fibrillation requiring defibrillation and 
cardiopulmonary resuscitation (CPR). It was then decided to 
attempt implantation of the pacing lead in the atrium. However, 
after attempts at multiple atrial sites (x4), no atrial capture was 
elicited at maximal output. Repeat attempts to pace using a 
different pacing lead (Medtronic 5076-49 cm) in the ventricle and 
the atrium were also unsuccessful. Blood gases and electrolytes 
were stable throughout the procedure. Episodes of asystole 
and ventricular fibrillation requiring CPR and intermittent 
defibrillation continued. ECMO support with lidocaine, 
isoproterenol and dobutamine infusions was initiated during CPR. 
Echocardiography revealed no pericardial effusion. Even though 
cardiac function and rhythm stabilized there was evidence of 
significant neurologic impairment. Following serial neurological 
evaluations, cardiorespiratory support was withdrawn. The family 
refused an autopsy, but consented to genetic testing. 

The patient was found to have two disease causing mutations 
on the SCN5A gene (R104Q and T1645M) as illustrated in 
Figure 3. Subsequently, the parents were tested for the identified 
mutations. The mother had the R104Q mutation in the SCN5A 
gene and the father was positive for the T1645M mutation in the 
SCN5A gene. 

Discussion
SCN5A gene, located on chromosome 3p21, encodes the alpha 
subunit of the voltage-gated cardiac sodium channel. It plays a 
major role in the initial depolarization phase, and determines the 
conduction velocity and excitability of cardiac myocytes [1,2]. 
SCN5A mutations have been associated with primary electrical 
and conduction defects such as Brugada syndrome, long QT3, 
atrial fibrillation, ventricular fibrillation, sudden infant death 
syndrome, atrial standstill, sick sinus syndrome and heart block 
[1,3-5] as well as dilated cardiomyopathy and left ventricular non-
compaction [6,7]. Combination of mixed phenotypes can be seen 
even in the presence of a single SCN5A mutation [8,9].

SCN5A mutation expression is related to either loss-of-function 
or gain-of-function mutations. Both the form of mutations leads 
to alteration of electrical and mechanical properties of the cells. 
It is not well understood whether arrhythmias and structural 
defects are a direct effect of sodium current alterations, or merely 
secondary to long-standing cardiac abnormalities [9]. Presence 
of both loss and gain-of-function mutations in an individual may 
lead to varied phenotypic expressions which, so far, have not 
been defined. 

SCN5A mutation is a prominent known cause for atrial inexcitability. 
Atrial inexcitability has been reported with compound 
heterozygous mutation of SCN5A cosegregated with Connexin 40 
[10,11] and compound heterozygous loss-of-function mutations 
[12]. The preferential occurrence of atrial inexcitability in SCN5A 
mutation, rather than ventricle, may be related to the intrinsic 
differences between atrial and ventricular myocardium, such as 
liminal length for action potential propagation, sodium current 
densities and the speculation that the generation of ventricular 
action potentials in SCN5A mutation might depend upon sodium 
channel isoforms other than SCN5A expressed in ventricular 

Figure 1 15-lead Electrocardiogram revealed sinus tachy-
bradycardia with accelerated junctional beats, 
first degree AV block (PR 160 ms), right ventricular 
conduction delay (QRS duration 112 ms), non-specific 
ST segment changes and QTc ranging between 470-
510 ms (ms-milliseconds).

Figure 2 Holter monitor tracings: A. Asystole with the longest 
pause of 6 seconds during sleeping. B. Non-sustained 
wide complex rhythm of 4 beats at a rate of 150 beats 
per minutes.

Figure 3 Cardiac sodium channel (SCN5A) topology 
demonstrating transmembrane organization, 
consisting of 4 homologous domains and intracellular 
amino and carboxyl termini. Examples of loci are 
marked. *indicates R104Q mutation previously 
reported in Brugada syndrome. #indicates T1645M 
mutation previously reported in Long QT 3 syndrome. 
(Adapted with permission from GeneDx).
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ventricular pacing thresholds has been reported in 3/11 patients 
in a case series with SCN5A loss-of-function mutations associated 
with poor pacemaker capture [17]. We postulate that the loss-
of-function and gain-of-function mutations together may have 
led to impairment in the action potential generation and/ or 
propagation in the ventricle as has been reported in the atrium, 
leading to pacing non-capture in the atrium and ventricle in our 
patient. 

Our report suggests that genetic mutation(s) analysis may have a 
diagnostic benefit in the etiology of complex cardiac arrhythmias, 
particularly in the setting of known or suspected cardiomyopathy. 
Compound heterozygous SCN5A mutation(s) involving both loss-
of-function and gain-of-function mutation adds another facet to 
the spectrum of manifestations.
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tissue [13,14]. Alternatively, ventricle-specific metabolic or signal 
transduction events and alternative processing of SCN5A mRNA 
or accessory proteins other than β-1 and β-3 subunits may enable 
partial rescue of mutant SCN5A phenotypes in the ventricle but 
not the atrial myocardium [14].

Our patient had compound heterozygous mutations in the 
SCN5A gene. Individually, each mutation is a disease-causing 
mutation. Both are single base pair SCN5A mutations which lead 
to amino acid substitutions. The R104Q mutation is a loss-of-
function mutation, previously reported in a patient with Brugada 
syndrome [15], whereas the T1645M mutation is a gain-of-
function mutation, previously described in long QT3 syndrome 
patient [16]. The interaction between two pathogenic mutations 
in a single patient has not been previously reported. Our patient 
had symptomatic sinus node dysfunction, first degree AV block, 
right ventricular conduction delay, QT prolongation, atrial 
quiescence, both atrial and ventricular inexcitability, ventricular 
arrhythmia and suspicion for LV non compaction, which may also 
be regarded as an overlap syndrome. Intermittently elevated 
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